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Abstract

Fully developed low-Reynolds-number turbulent ¯ow through straight permeable pipes with circular cross-section is investi-

gated by means of direct numerical simulation. Three di�erent cases of wall permeability are treated and compared with the case of

a solid wall. In two of these cases, the wall satis®es the no-slip condition, but allows for the wall normal velocity ¯uctuations in two

di�erent ways. In the third case, the pipe wall has rectangular openings of size �6Dz� � 10�RDu���, regularly distributed over the

whole surface, similar to a chessboard, where the white areas represent the openings and the black ones the solid wall. Velocity

boundary conditions in the openings are such that the mean mass ¯ux across the wall is zero and the ¯ow in the openings is stress-

free. All ¯ows are driven by the same mean pressure gradient. Consequently, those ¯ows which satisfy the no-slip condition have

the same wall shear stress and hence the same turbulence Reynolds number Res � 360. Pipe ¯ow with wall openings exhibits a

small, but ®nite Reynolds shear stress at the wall. If the friction velocity is de®ned via the total stress at this wall, the ¯ow

nominally has the same turbulence Reynolds number. The overall e�ect of a permeable wall with rectangular openings is a mean

axial slip velocity at the wall and reduced viscous stress. In a thin near-wall layer of thickness m=us, the turbulence activity is

increased compared to the ¯ow cases, where the velocity components satisfy the no-slip condition. All three rms-velocity ¯uctu-

ations are non-zero. As a result the structure of the Reynolds stress tensor is modi®ed in this region. This is also re¯ected in higher

order central moments of the velocity ¯uctuations. A permeable wall with rectangular openings may be viewed as a model for a

rough wall with a mean non-dimensional roughness height of 8.3 wall units. Close to such a wall the budgets of the Reynolds stress

tensor di�er strongly from those for ¯ow along a smooth impermeable wall. Ó 2000 Begell House Inc. Published by Elsevier

Science Inc. All rights reserved.
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1. Introduction

In recent direct numerical simulations (DNS), Wagner and
Friedrich (1998a,b) have shown that turbulent ¯ow through
partially permeable pipes behaves similarly to ¯ow through
rough pipes. Wall permeability was modelled in such a way
that the no-slip condition for the tangential components was
retained, while the wall normal velocity was extrapolated
from inner points and damped at a constant rate in accor-
dance with the continuity condition. The analogy to ¯ow
through rough pipes was deduced from a comparison of mean
velocity pro®les with Nikuradse's log-law for rough pipes
(Schlichting (1968)). The e�ective roughness heights obtained
from this analogy varied from 15.5 to 19.8 wall units. Con-
siderable changes in the turbulence structure were observed in
the permeable wall cases as compared to the smooth solid
wall case. They were documented in terms of rms-velocity

¯uctuations, Reynolds shear stress and ¯atness factors of the
three velocity ¯uctuations. Two-point correlations of axial
velocity ¯uctuations in the bu�er layer indicated a slight
reduction in the streak spacing, which is not obvious when
instantaneous contour lines of axial velocity ¯uctuations are
compared.

In the present investigation, we go a good step further and
relax the no-slip constraint at the permeable wall assuming
rectangular openings in the wall in which velocity ¯uctuations
can develop freely in all three directions. This is achieved on
the basis of stress-free boundary conditions and the continuity
constrain. The pipe with openings can be imaged as being
surrounded by a pipe of bigger diameter ®lled with the same
¯uid.

The paper comprises a discussion of the numerical method
used to integrate the incompressible Navier±Stokes equations,
the boundary conditions and computational parameters. Most
of the results deal with a comparison of mean ¯ow quantities
for three di�erent permeable walls and a solid wall. Changes in
the turbulence structure resulting from the wall permeability
are discussed in terms of second and higher order central
moments of the velocity ¯uctuations and ®nally in terms of
budgets of the four non-zero Reynolds stresses.
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2. Numerical method and computational details

The Navier±Stokes equations for incompressible ¯ow

r �~u � 0; �1�

o~u
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�r � �~u~u� � ÿ 1

q
rp � mr2~u; �2�

are integrated in a cylindrical �z;u; r�-coordinate system using
staggered grids and second-order central di�erencing. A semi-
implicit time-integration scheme advances the solution in time.
Only those convection and di�usion terms are treated implic-
itly, which contain derivatives in the circumferential direction.
Thus, time step restrictions resulting from small grid spacing
rDu near the centreline are avoided. The remaining convection
terms are advanced in time using the second-order accurate
leap-frog scheme. The pressure gradient is split into a constant
mean part, which drives the ¯ow and a ¯uctuating part. The
latter is neglected in the ®rst sub-step of the projection method
and then used to correct the velocity ®eld. The 3D Poisson
equation which provides the ¯uctuating pressure ®eld is solved
directly via FFT in the homogeneous �z;u�-directions and a
standard tridiagonal matrix algorithm.

2.1. Boundary conditions

The ¯uctuating pressure and instantaneous velocity vector
are periodic in axial and circumferential directions.

At the wall, the ¯uctuating pressure satis®es a von Neu-
mann condition, irrespective of whether the wall is solid or
permeable. No-slip and impermeability conditions hold at the
solid wall (DNS 1). In the two permeable wall cases, the no-slip
conditions

uz � uu � 0 at r � R �3�
are satis®ed, but the wall permeability for the radial velocity
component is modelled as follows:

�urr�r�R � a�urr�r�RÿDr: �4�
In case of DNS 2, each cell along the wall is partially perme-
able, with a � 0:975. In DNS 3, each second wall cell in �z;u�-
directions is either solid �a � 0� or perfectly permeable �a � 1�.
Finally, in DNS 4 the wall has rectangular openings, in which
zero-stress conditions
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are satis®ed along with the continuity condition

ouz

oz

�
� 1

r
ouu

ou
� 1

r
orur

or

�
r�R

� 0: �7�

If the extrapolation of ur in (4) or (7) violates the mass balance,
continuity is enforced. Consequently, the mean velocity com-
ponent in radial direction must vanish.

2.2. Computational parameters

The domain in which the computations are performed is a
pipe of diameter D � 2R and length 5D. It is resolved by an
equidistant grid of 480� 240 points in �z;u�-directions, re-
spectively. Along the radius (R), 70 points are non-equidis-
tantly distributed, with the ®rst point at y� � 0:185. The
Reynolds number based on friction velocity, us, and diameter,
D, is Res � 360. In wall units the grid spacing is

Dz� � 3:75;

�r�Du� � 0:073±4:71; �8�

Dr� � 0:185±5:56:

The wall openings in the case of DNS 4 have the size
�1=8� p=20�R2 in �z;u�-directions or �22:5� 28:26� in wall
units which correspond to �10� 6� cells. They are arranged
similarly to a chessboard as indicated in Fig. 1, where the white
®elds represent the openings.

In all simulations, the ¯ow was observed and averaged
over more than 10 eddy turnover times D=us during which
the bulk velocity remained stable. The computations were
started from previous DNS of pipe ¯ow along solid/perme-
able walls.

Notation

D pipe diameter
k turbulent kinetic energy
kR roughness parameter
p pressure
r radial coordinate
R pipe radius
Res Reynolds number based on us;D
Reb Reynolds number based on Ub;D
Ruzuz two-point autocorrelation of axial velocity

¯uctuations
~u velocity vector
uz; uu; ur velocity components in axial, circumferential,

radial direction
us friction velocity
Ub bulk velocity
y � Rÿ r wall normal coordinate

z axial coordinate

Greeks
a damping factor to control the radial velocity

component at the wall; ranges from 0 (solid wall)
to 1 (perfectly permeable wall)

k friction factor, streak spacing
u azimuthal coordinate
q density
m kinematic viscosity

Other symbols
h::i Reynolds average
�::�0 ¯uctuation
r gradient
r2 Laplacian
D ®nite di�erence
�::�� quantity non-dimensionalized by wall units,

either us or m=us
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3. Results

3.1. Snapshot of instantaneous velocity ®eld

The e�ect of the wall openings on the velocity ®eld is
demonstrated for DNS 4 in Fig. 2, where contours of the in-
stantaneous streamwise velocity ®eld are plotted in unrolled
wall parallel surfaces for a wall distance of y� � 2. Close to the
wall, uz re¯ects the chessboard-like structures, which are a
result of the no-slip and stress-free conditions at the wall.
Superimposed are streaky structures, which are generated in
wall bounded shear ¯ows by the up and down of slow and fast
¯uid (see Wagner and Friedrich (1998a)).

3.2. Mean ¯ow ®eld

We use triangular brackets to de®ne statistical averages.
Except for hpi, they are obtained from DNS data by sampling
in z- and u-directions and in time. Table 1 presents an over-
view over the four direct simulations performed, including

global ¯ow parameters like Res, the Reynolds number Reb,
based on bulk velocity Ub and the friction factor k de®ned by

dhpi
dz
� ÿ k

D
q
2

U 2
b : �9�

A roughness height, kR, underlining the similarity between
¯ow through permeable and rough pipes, is computed, using
Nikuradse's law for the rough pipe (Schlichting (1968))

Fig. 2. Contours of streamwise velocity uz in wall parallel planes for a

wall distance of y� � 2. Black/gray lines represent positive/negative

values, respectively.

Table 1

Parameters of fully developed turbulent ¯ow in pipes with partially

permeable walls (DNS 2,3,4) and a solid wall (DNS 1)

DNS 1 2 3 4

Res 360 360 360 360

a 0.0 0.975 ± ±

Reb 5317 4406 4691 5252

Ub=us 14.77 12.24 13.03 14.59

k � 102 3.67 5.30 4.71 3.76

kR=D ± 0.055 0.043 0.023

k�R ± 19.8 15.5 8.28

Fig. 3. Mean velocity pro®le in a solid and in permeable pipes. DNS

1: ±±±±, DNS 2: ± ± , DNS 3: Ð �Ð�, DNS 4: � � � � � �, LDA mea-

surements of Westerweel et al. (1992): �.

Fig. 4. Mean velocity pro®les versus wall distance normalized with the

roughness height. DNS 2: �, DNS 3: +, DNS 4: �, Nikuradse's log-

law: ±±±± .

Fig. 1. Wall openings (white) of size 22� 28m2=u2
s .

C. Wagner, R. Friedrich / Int. J. Heat and Fluid Flow 21 (2000) 489±498 491



huzi
us
� 2:87 ln

y
kR

� �
� 8:48; �10�

with a slope modi®ed from 2.5 to 2.87.
The numbers in Table 1 indicate that wall permeability

reduces the ¯ow rate through the pipe and increases the drag
due to enhanced turbulence activity. Permeable walls act

similarly to rough walls with roughness heights reaching the
bu�er layer of turbulent ¯ow through a solid pipe.

The mean axial momentum transport in all ¯ow cases is
governed by the balance between pressure gradient, viscous
and Reynolds shear stress

ÿ r
2

1

q
ohpi
oz
� m

dhuzi
dr
ÿ hu0zu0ri � 0: �11�

Fig. 5. Pro®les of axial rms-velocity ¯uctuations for DNS 1: ±±±±,

DNS 2: - - - -, DNS 3: ÿ � ÿ � ÿ�, and DNS 4: .

Fig. 6. Circumferential rms-velocity ¯uctuations. Lines as in Fig. 5.

Fig. 7. Pro®les of radial rms-velocity ¯uctuations. Lines as in Fig. 5.

Fig. 10. Flatness factors of circumferential velocity ¯uctuations. Lines

as in Fig. 5.

Fig. 8. Pro®les of total and Reynolds shear stresses. Lines as in Fig. 5.

Fig. 9. Flatness factors of axial velocity ¯uctuations. Lines as in Fig. 5.
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This equation already re¯ects the linearity of the total shear
stress (sum of viscous and Reynolds stress). If in all ¯ow cases
the pressure gradient is used to de®ne the friction velocity
according to

ohpi
oz
� ÿ 2

R
qu2

s ; �12�

1

Res

d�huzi=us�
d�y=D� �

hu0zu0ri
u2

s

� 1ÿ 2
y
D
; �13�

where the y-coordinate has been introduced as y � Rÿ r. It is
easy to show that Taylor expansions of u�z � huzi=us near the

wall, in terms of powers of the wall coordinate y� � yus=m,
have the following forms:

Solid wall (DNS 1):

u�z � y� ÿ 1

8

ou�0z

oy�
o2u�0r

oy�2

� �
0

y�4 ÿ � � � �14�

Permeable wall with no-slip condition (DNS 2,3):

u�z � y� ÿ 2
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�
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u�0r

� ��
0

y�2

2
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Permeable wall with stress-free openings (DNS 4):

u�z � u�z �0� � �1ÿ u�0z u�0r


 �
0
�y�

ÿ 2
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�
� d
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u�0z u�0r


 ��
0

y�2

2
ÿ � � � �16�

Along a solid wall, a viscous sublayer of thickness 5m=us de-
velops, in which the velocity pro®le is linear. The permeable
wall with vanishing tangential velocity components experi-
ences the full viscous stress, but due to the rapid near wall raise
of the Reynolds shear stress there is no viscous sublayer. The
velocity pro®le is parabolic close to the wall. At the permeable
wall with openings, we observe in the mean a small, but ®nite
slip velocity u�z �0� and reduced viscous stress. Again, there is
no viscous sublayer and a parabolic velocity pro®le close to the
wall.

Fig. 3 shows mean velocity pro®les in wall units for solid
and permeable pipes. The solid wall data compare very well
with LDA measurements of Westerweel et al. (1992) for the
same Reynolds number. Permeable pipes generate pro®les with
a downward shift of the core layer part. This behaviour is also
typical for ¯ow through rough pipes. A `®rst-order' similarity

Fig. 11. Flatness factors of radial velocity ¯uctuations. Lines as in

Fig. 5.

Fig. 12. Contour lines of the two-point correlation Ruzuz de®ned in Eq. (17) in a pipe with solid walls (a) and a pipe with wall openings (b) for

Res � 360.
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between ¯ow through permeable and rough pipes is obvious
from Fig. 4, where the mean velocity is plotted against y=kR.
The law for the rough pipe, Eq. (10) is hence valid in the core
region of any of the ¯ows through permeable pipes. Further
similarities have to be searched, based on the turbulence
structure.

3.3. Second and higher order moments

Figs. 5±7 present the e�ect of wall permeability on the rms-
velocity ¯uctuations. While the axial and circumferential
components are zero at the wall for DNS 1, 2, 3 due to the no-
slip constraint, these values are ®nite for a pipe with openings
(DNS 4). Between the wall and the position of maximum TKE
production, the turbulence activity is enhanced compared to
the solid wall case. In a thin layer of the order of the classical
viscous sublayer, the stress-free boundary conditions along
with the ®nite wall normal ¯uctuations lead to a local maxi-
mum of uz;rms at the `wall' and to a local maximum of ur;rms

within that layer. Fig. 8 shows the total shear stress and the
Reynolds shear stresses for DNS 1, 2, 3, 4. The wall openings
generate a non-zero Reynolds shear stress along the wall.
Accordingly the viscous stress is reduced there. The ¯atness

Table 2

Wall values of terms in the balance equations for hu02z i, hu02u i, hu02r i.
Zero/®nite values are indicated by 0/f

P D PS PD TD VD

DNS 1 0; 0; 0 f ; f ; 0 0; 0; 0 0; 0; 0 0; 0; 0 f ; f ; 0
DNS 3 0; 0; 0 f ; f ; f 0; f ; f 0; f ; f 0; 0; f f ; f ; f
DNS 4 f ; 0; 0 f ; f ; f f ; f ; f 0; f ; f f ; f ; f f ; f ; f

Fig. 13. Terms in the budgets of hu02z i for DNS 1 in (a), DNS 3 in (b) and DNS 4 in (c). Lines as in (a).
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factor of ¯uctuating quantities indicates intermittency e�ects
when it reaches high values and random motion (a Gaussian
p.d.f.) for a value of three. In this sense, the wall normal ve-
locity ¯uctuations re¯ect an intermittent behaviour close to a
solid wall which, according to Xu et al. (1996), is due to strong
sweep events, see Fig. 11. Wall permeability tends to reduce the
high near-wall amplitudes of F �u0r� and to increase those of
F �u0z� and F �u0u�, see Figs. 9±11. The pipe with openings (DNS
4) does not seem to follow the behaviour of the two other
permeable pipes (DNS 2,3) what the axial ¯uctuations are
concerned about (Fig. 9).

The fact that F �u0z� has lower values close to the wall than
even the solid wall case (DNS 1) is, however, due to the near-
wall increase in the axial rms-velocity ¯uctuations.

Sweeps and ejections generate streaky structures close to
the wall as already pointed out. These streaks are commonly

visualized plotting contours of the instantaneous axial velocity
¯uctuations in wall parallel planes (see Fig. 2). In order to
demonstrate their statistical relevance, contours of two-point
correlations of the axial velocity ¯uctuations

Ruzuz � u0z�z;u; y�

 � 14�u0z�z� Dz;u� Du; y� � 14��; �17�

of DNS 1 and DNS 4 are plotted in Fig. 12 at a wall distance
of y� � 14. From these a mean streak spacing of k� � 120 is
deduced in the solid pipe (DNS 1) and of 110 for the wall
openings of DNS 4.

3.4. Reynolds stress budgets

For a better understanding of the changes in the turbulence
structure due to wall permeability, we present pro®les of all the

Fig. 14. Terms in the budgets of hu02u i for DNS 1 in (a), DNS 3 in (b) and DNS 4 in (c). Lines as in Fig. 13.
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terms appearing in the transport equations for the stresses. The
three cases DNS 1, DNS 3 and DNS 4 are compared. The
equations for the fully developed, non-swirling ¯ow can be
found in Eggels et al. (1994).

The symbols used indicate production (P), turbulent di�u-
sion (TD), pressure-di�usion (PD), pressure-strain (PS), vis-
cous di�usion (VD) and dissipation (D). For better visibility,
only parts of the pro®les are presented, namely those from
the wall up to y� � 60. Since the near-wall behaviour of the
terms strongly depends on their wall values, we provide a table
Table 2 showing whether these values are zero (0) or ®nite �f �.

Several terms have ®nite values at permeable walls only due
to transverse curvature. This is true for various PS, PD and
TD terms and constitutes the di�erences to corresponding
channel ¯ow. In Figs. 13±15, we discuss the e�ect of wall
permeability on the budget of each of the normal stresses,

starting with the axial component, Fig. 13. While in solid walls
viscous di�usion and turbulent dissipation balance, there is a
non-negligible contribution to this balance from the pressure-
strain correlation at a wall with openings (DNS 4). Moreover,
the amplitudes of VD and D at the wall are strongly increased
(DNS 4). This is already the case at walls which allow only for
ur-¯uctuations (DNS 3). The peak values in the production
rates are practically unmodi®ed. The nearly linear increase in P
close to the permeable wall of DNS 3 is a consequence of the
behaviour of the Reynolds shear stress. The budgets of hu02u i
are shown in Fig. 14. This component gets energy from the
longitudinal component via redistribution. The PS-term of the
hu02u i peaks where the production term of hu02z i has its maxi-
mum. The PS-term, however, peaks a second time even closer
to the wall in DNS 4. This e�ect correlates properly with the
large negative values of PS in the hu02z i-budgets and with the

Fig. 15. Terms in the budgets of hu02r i for DNS 1 in (a), DNS 3 in (b) and DNS 4 in (c). Lines as in Fig. 13.
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relative maximum in the axial rms-velocity ¯uctuations (Fig. 5).
The overall behaviour of the other budget terms is quite sim-
ilar in all the three cases. From the hu02r i-budget, it is known
(already from channel ¯ow) that PS and PD have peaks and
balance within the viscous sublayer of a solid wall. The same
balance still holds for DNS 3 and the peaks are even at the
same positions. The peak amplitudes have, however, increased
by more than 20%. A further increase in these locally maximal
amplitudes is observed in case of DNS 4. Yet, PD and PS do
not attain zero wall values, but extreme values on the opposite
sides. This is probably the most striking feature of this ¯ow
case, namely positive PS-values at the wall with openings,
which are roughly 16 times larger than those at the peak po-
sition of hu02r i in solid pipe ¯ow. It sheds some light on the
importance of PS and PD-modelling in the balance equation
for the velocity ¯uctuations in the direction of mean shear of
shear driven turbulence.

The hu0zu0ri-budget in Fig. 16 reveals a balance between
production ( P) and pressure-strain ( PS) away from the wall
for DNS 1, 3 and 4. Close to the wall PS peaks in all cases and
is balanced by PD in DNS 1 and DNS 3. The stress-free wall
openings of DNS 4 generate high positive dissipation rates at
the wall, which balance PS at values exceeding those of DNS 1
and 3 by a factor of 10.

4. Conclusions

Direct numerical simulation was used to investigate the
changes in the turbulence structure induced by wall perme-
ability which to ®rst order act as wall roughness in fully de-
veloped, non-swirling pipe ¯ow. It is found that walls with
openings (DNS 4) in which zero-stress conditions are used
provide strong changes in the ¯ow structure as compared to

Fig. 16. Terms in the budgets of hu0zu0ri for DNS 1 in (a), DNS 3 in (b) and DNS 4 in (c). Lines as in Fig. 13.
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¯ow in smooth impermeable pipes (DNS 1). These changes
are:
· A mean axial slip velocity and a small positive Reynolds

shear stress leading to reduced mean viscous stress at the
wall, but only slightly reduced bulk velocity.

· Non-zero rms-velocity ¯uctuations at the wall and in turn
enhanced turbulence activity close to the wall.

· The turbulence production rate is non-zero at the wall.
Likewise, are pressure-strain and turbulence di�usion terms
of the ur-budgets and pressure-di�usion terms of the
�uu; ur�-budgets non-zero.

· The most striking features of DNS 4 are the high positive
level of the pressure-strain correlation and the high nega-
tive level of the pressure-di�usion term in the hu02r i-bal-
ance.
These results shed some light on the importance of PS-

and PD-modelling especially in the balance equation for the
velocity ¯uctuation in the direction of main shear. It would
be interesting to compare these results with detailed mea-
surements in the vicinity of rough walls and to see, to what
extent permeable walls are useful models of wall roughness
e�ects.

References

Eggels, J.G.M., Unger, F., Weiss, M.H., Westerweel, J., Adrian, R.J.,

Friedrich, R., Nieuwstadt, F.T.M., 1994. Fully developed turbulent

pipe ¯ow. A comparison between direct numerical simulation and

experiment. J. Fluid Mech. 268, 175±209.

Schlichting, H., 1968. Boundary-Layer Theory, sixth ed., McGraw-

Hill, New York.

Wagner, C., Friedrich, R., 1998a. On the turbulence structure in solid

and permeable pipes. Int. J. Heat Fluid Flow 19, 459±469.

Wagner, C., Friedrich, R., 1998b. Direct numerical simulation of

turbulent ¯ow through permeable or rough pipes. In: Papailiou,

K.D. et al. (Eds.), Computational Fluid Dynamics, vol. 1. Wiley,

New York, pp. 238±243.

Westerweel, J., Adrian, R.J., Eggels, J.G.M., Nieuwstadt, F.T.M.,

1992. Measurements with particle image velocimetry on fully

developed turbulent pipe ¯ow at low-Reynolds number. Proceed-

ings of the Sixth International Symposium on Applications of

Laser Technique to Fluid Mechanics, Lisbon, Portugal, 20±23 July.

Xu, C., Zhang, Z., den Toonder, J.M.J., Nieuwstadt, F.T.M., 1996.

Origin of high kurtosis levels in the viscous sublayer, direct

numerical simulation and experiment. Phys. Fluids 8, 1938±1944.

498 C. Wagner, R. Friedrich / Int. J. Heat and Fluid Flow 21 (2000) 489±498


